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Reminding some concepts...



Cancer incidence rates

Age Specific Cancer Incidence Rates
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Cancer risk increases with age. This INDIRECTLY suggests that cancer takes
many years to develop and become clinically detectable



Mutagens, latency and cancer
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Darwinian evolution and clonal expansion
during tumorigenesis
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Trunk and branching mutations during
tumorigenesis
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Several mutagenic events are required to
transform human cells

Sufficient to transform mouse cells
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Required to transform human cells

Immortalization: cells proliferate in vitro and do not senescence
Tranformation: cells can form tumors



Evidence for multi-step progression in several
cancer types
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Multi-step progression in colorectal cancer (CRC)
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Loss of heterozigosity (LOH)

cell lacking any
functional Rb

gene copies

\
S phase -~ = Gzand M - segregation of P -
‘chromosome ‘ ‘ phases of - chromatids at ‘ ‘ ‘ ‘ ‘
- replication 7 cellcycle - end of mitosis @) @) ®)
—_— ( | | —— i > | |* | OR o+ |
=— mutant % mitotic = = 1

\ Rb allele T _ recombination \ | ' \

heterozygosity retention of loss of
at Rb locus Rb heterozygosity Rb heterozygosity

in daughter cells in daughter cells

(pRb illustrated as example for mitotic recombination. Note that LOH may equally
happen through other mechanisms, e.g., epigenetic silencing of the second allele)

Figure 7.8 The Biology of Cancer (© Garland Science 2007)



Alternative genetic alterations may underlie
multi-step tumor progression in CRC
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Role of APC in multi-step progression of CRC
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Familial adenomatous polyposis (FAP):
germ-line inactivation of a single APC allele

Rare disease; germ-line (monoallelic) mutation in APC is inherited

One APC allele is mutated in each of the billions of epithelial cells that
line the colonic mucosa

LOH occurs quite frequently (1 in 10,000 cell generations)...

... S0 dozens to thousands of small polyps (early adenomas) develop
in the colon that lack both APC alleles

One or several polyps inevitably progress to adenocarcinoma within
20-40 years (through the acquisition of additional, sporadic drlver
mutations) — long latency | — |




INPCC syndrome (hereditary nonpolyposis
colorectal cancer)

More commonly known as Lynch syndrome
Rare, germ-line (autosomal dominant) disease

Benign lesions form at the same frequency/timing as in the normal
population

Once formed, benign lesions (adenomas) may progress rapidly into
aggressive invasive adenocarcinomas.

Responsible of 2-3% of colon cancers (hereditary form), but the same
mechanism can occur sporadically and account for another 10% of CRC
cases.

Germ-line mutations affect the DNA repair system: mismatch (MMR)
repair enzymes



Microsatellites and DNA instabllity

Errors during DNA polymerization (there are ca 15 DNA polymerases in the human
genome, 3 involved in DNA replication)

Errors mainly occur at repetitive regions, microsatellites, which are simple
sequence repeats of 6-7 bps present in both coding and noncoding sequences

-> microsatellite instability

Mismatches in microsatellites
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Size of the microsatellite BAT25 is increased in
cancer tissue (expansion of dinucleotide repeats
CACACA...).

Microsatellite instability is present in many cancer
types. It suggests defects in the repair of such
mutations in the cancer cells....



Mismatch repair (MMR) enzymes
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INPCC syndrome (hereditary nonpolyposis

colorectal cancer)

One allele is mutated in each of the
billions of epithelial cells that line the
colonic mucosa; second allele lost by
LOH (occasionally in MLH1) or other
events, like promoter
hypermethylation (MSH2).

Mutations in MMR enzymes increase
the rate of mutations in
microsatellites: short DNA repeats
like AAAAAAA (A7) contained in some
genes (in addition to non-coding
regions).

Such repeats cause DNA polymerases
to occasionally skip or duplicate one
A, leading to, e.g., TTTTTT (T6) or T8
in the copied strand.

In the absence of MMR enzymes,
these errors are not corrected and
mutations occur rapidly —— short
latency



HNPCC syndrome (hereditary nonpolyposis
colorectal cancer)

OMIM name

HNPCC1

HNPCC2

HNPCC5

HNPCC4

HNPCC3

HNPCC6

HNPCC7

Genes implicated
in HNPCC

MSH2

MLH1

MSH6

PMS2

PMS1

TGFBR2

MLH3

Frequency of wild-type TGF-B

mutations in type-ll — “

HNPCC families ~ 1OF-B
receptor

approximately

60% TGFB-R2 gene

imatel .

285}2 ox y serine/ wild type
threonine Glu Lys Lys Lys Pro Gly
kinase GAA AAA AAA AAG CCT GGT

7-10% domain

deletion

relatively

infrequent, <5% mutant
truncated GAA AAA AAA GCC TGG TGA

case report receptor Glu Lys Lys Ala Trp Stop

degradation l
case report )
disputed

A microsatellite is present in the TGFB-R2 gene. Loss of TGFB-R2 leads to loss of this
important anti-mitogenic signal. This homozygous mutation is present in 90% of

HNPCC colon cancers



Mismatch repair (MMR) deficiency in co

orectal cancer

Pathways to mismatch repair deficiency in colorectal cancer
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Microsatellite instability (MSI) is variably frequent (1-
12%) across cancer types but is not always associated

with known germline MMR gene mutations
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Microsatellite instability (MSI) is variably frequent (1-
12%) across cancer types but is not always associated

o with known germline MMR gene mutations
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Many tumors acquire genetlc instability through
mechanisms that do not involve mutated or
inactivated MMR enzymes, but likewise involve
mutations in a large number of genes that control
genomic integrity
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Because of genetic instability, the rate of mutations
exceeds the rate at which Darwinian selection
positively selects fit clones

Theoretical Reality
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Sequencing of cancer genomes reveals thousands of mutations in each
tumor, which reflect both the presence of multiple clonal populations
and the occurrence of hundreds of (neutral) mutations in each clone



Genetic instability and Darwinian selection

(A) normal cells (B) cells with optimum
genetic instability
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Inherited (rare) mutations, sporadic
mutations, LOH, and genetic instability,
all contribute to the onset of cancer

How do our cells cope with this?

Low rates of stem cell divisions
Physical and biochemical protection from mutagenic events

DNA repair enzymes



Stem cells
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Intestinal stem cells

lumen of
small intestine
A
tips of
villi
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differentiation
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+4 stem cells have low proliferation rates, but they generate rapidly proliferating
progenitors (+5-10 position) that — while migrating toward the tip of the villus —
differentiate into mature enterocytes and goblet cells, which are short lived. The

whole program takes only 3-5 days!



Normal stem cells may be the cells of origin of cancer
LETTERS

Crypt stem cells as the cells-of-origin of intestinal
cancer

Nick Barker'*, Rachel A. Ridgway**, Johan H. van Es', Marc van de Wetering', Harry Begthel', Maaike van den
Born!, Esther Danenbergl, Alan R. Clarke®, Owen J. Sansom? & Hans Clevers'
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Cancer stem cells (CSCs) can be identified in many
cancer types and express stem cell markers

|dentification of CSCs in glioblastoma
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Based on the cancer stem cell hypothesis,
only a minor proportion of the cancer cells Iin
a tumor can support clonal expansion and
tumor growth. So, mutations occurring in
non-CSCs may be inconsequential to tumor
progression (yet are detected by genome
sequencing)



A revised model of multi-step progression and

Any third mutation here
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Inherited (rare) mutations, sporadic
mutations, LOH, and genetic instability,
all contribute to the onset of cancer

How do our cells cope with this?

Low rates of stem cell divisions
Physical and biochemical protection from mutagenic events

DNA repair enzymes



Physical shielding of keratinocyte nuclei
from UV radiation

Keratinocytes are protected from
the UV light by melanin pigments,
which are transferred from
melanocytes to the keratynocytes




Glutatione-S-transferases (GSTs)

glutathione (GSH)

H H O H H O NH,
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H > H
l I SH) |
glycine cysteine glutamic acid

Sulphydryl group reacts with reactive compounds

« Glutathione is a tripeptide that is used by GSTs to “neutralize” toxic molecules (eg.

aflatoxins)

« Some cancers downregulate GSTs via promoter methylation; 90% of prostate
adenocarcinomas have low GST levels

« Individuals with two null alleles of one key GST have 4-fold higher risk of developing
myelodysplastic syndrome (MDS) compared to homozygous individuals.



Inherited (rare) mutations, sporadic
mutations, LOH, and genetic instability,
all contribute to the onset of cancer

How do our cells cope with this?

Physical and biochemical protection from mutagenic events
Low rates of stem cell divisions

DNA repair enzymes



Repair of mutated DNA: Exo-nuclease
activity of DNA polymerases
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Mismatch repair (MMR) enzymes

>

error in newly | BINDING OF MISMATCH These enzymes correct mis-matches

made strand  } PROOFREADING PROTEINS (wrong pairing) introduced by DNA
o polymerases

MutS MutL | NICKIN NEW DNA STRAND

Significance of MMR system (mutation rate):

‘ DNA SCANNING DETECTS
N

=TRAND REMGVAL DNA polymerase mismatches: 10
— + repair: 3 -> 5 exonucl. activity: 107
REPAIRDNASYNTHEsls T Fepalr: MMR enzymes: 10-°
MutS homologs (eg. MSH2/MSH6) Mutations in the MMR enzymes can
MutL homolog (eg. MLH1/PMS1) be recognized by increased

microsatellite instability



Nucleotide excision repair (NER)

The NER system is usually employed to correct pyrimidine dimers and DNA
adducts. P53 activates several genes involved in NER



Pyrimidine dimers

« UV light induces intra-strand pyrimidine dimers

* UV induces 60% TT, 30% TC dimers, and 10% CC -> frequent in p53
* These are stable mutations that can be repaired by NER enzymes

Cyclobutane pyrimidine dimers
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DNA adducts (aflatoxin B1)
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DNA adducts (benzopyrene)

Cytochrome P-450
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p53 mutations in lung cancer implicate
benzopyrene as a carcinogen
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Nucleotide excision repair (NER)

The NER system is usually employed to correct pyrimidine dimers and DNA
adducts. P53 activates several genes involved in NER

nucleotide excision repair (NER)
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Defects in nucleotide excision repair (NER)

nucleotide excision repair (NER)
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* The NER system is usually employed to
correct pyrimidine dimers and DNA adducts.

» P53 activates several genes involved in NER

» Defects in NER increase incidence of
epithelial tumors (eg., skin SCC and BCC)

» Xeroderma pigmentosum is caused by
inherited mutations in the NER genes




Base excision repair (BER)

The BER system is usually employed to correct deamination



Deamination

» Spontaneous mutations occurring in the genome
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Base excision repair (BER)

The BER system is usually employed to correct deamination

base excision repair (BER)
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>‘>>'>>‘>>'>>‘>>‘){ PODD ﬁﬁf}ﬁ%y\g#%ﬁ BBBBB DD ﬁﬁf}ﬁﬁ@ﬁbﬁ}
chemically altered base cleaved away deoxyribosylphosphate nucleotide inserted,
base, little helix cleaved away closure by ligase

distortion



Restoration of normal base structure by
DNA alkyltransferases

» Alkylating agents, such as ENU and N-ethyl-N-nitrosurea (very mutagenic), cause
A->T transitions and AT->GC or GC - AT transitions



Alkylation

1-methyladenine  3- methylcytosme 3-methylthymine 1-methylguanine

» Caused by environmental alkylating agents

* Present in many industrial products and also used as chemical weapons in the
first world war (sulfur mustard)

» Misread during DNA replication, induce mutations that can promote cancer.



Restoration of normal base structure by
DNA alkyltransferases

» Alkylating agents, such as ENU and N-ethyl-N-nitrosurea (very mutagenic), cause
A->T transitions and AT->GC or GC - AT transitions

» O6-methylguanine DNA metyltransferase (MGMT) removes alchyl groups.

* This gene is silenced in 40% of gliomas and colorectal carcinomas and 25% of non-

small cell carcinomas via promoter methylation
C2H5
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Homology directed repair (HDR)
and non-homologous end joining (NHEJ)

These systems are used to repair dsDNA breaks

HDR (S and G2)
high-fidelity

dsDNA break

IROVOVONE, SOSOVUORNON

I W
1 resection by exonuclease

RGN

base-pairing with unwound
DNA of sister chromatid

N LN L\NNG __ONOUIRON
AV AN A7 \//\\/f\\/f\\//\
DNA of undamaged

sister chromatid

1 strand extension

’\.’\/’\'\/’\.’\/’\. \’/\'\/’\.’\/’\,\/’\.

fillin gaps,
restore wild-type helix

N LN N LN N AN\ W

NHEJ (G2)
error prone — salvage mechanism

double-strand
break

AROVONONG, SOSOVORN,

resection of single
strands by exonuclease

AN U\ N 7SN N YN/ N7

DNA strands brought together;
possible limited base pairing between them

strands filled in;
joined by ligation

ROV ... 2RO\

j double helix reconstruction

A 2N AN NN AN

| I—
several base pairs present in original
wild-type sequence are missing




Breast cancer susceptibility 1 (BRCA1)
7-10% of women will
D develop breast cancer;
some BRCA1
mutations may
o8 increase the risk to

www BRcT 60%.

Ovarian cancer risk
BRCA2 *@ increases from 15% to

Rad51 40%.

Prophylactic bilateral
« BRCA1 is part of a large protein complex that binds DNA m:sF?[e}ét?)(:]C ll?ec?tt(e:eas
« BRCA1 repairs double-strand DNA breaks. 5 y .
- BRCA1 participates in HDR to repair damaged DNA reast cancer risk

« One mutation is inherited, a second is acquired by LOH Significantly in pajtients
with BRCA mutations

More insight into HDR and NHEJ in next class!!
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